11

said panel comprising a plurality of adjacent modules which are mutually separated by a boundary between said modules:

- (iii) cutting the modules at the boundary between said modules;
- (iv) laminating a plurality of glass sheets having a thickness in the range from $10 \, \mu m$ to $1.5 \, mm$ to at least one side of a module.
- **4.** Method according to claim **2** or **3** wherein the thickness of the glass is in the range from 10 to 700 μ m.
- 5. Method according to claim 1, 2 or 3 wherein the thickness of the glass is in the range from 30 to 500 μ m.
- 6. Method according to claim 1, 2 or 3 wherein the thickness of the glass is in the range from 50 to 300 μ m.
- 7. Method according to claim 1, 2 or 3 wherein the glass ¹⁵ is flexible.
- 8. Method according to claim 1, 2 or 3 wherein the glass is borosilicate or chemically hardened glass.
- 9. Method according to claim 2 or 3 wherein step (i) is carried out by a printing process or a web coating process.
- 10. Method according to claim 1, 2 or 3 wherein the glass is replaced by a glass/support laminate.
- 11. Method according to claim 1, 2 or 3 wherein the device is a flat panel display, a light emitting diode, an electrolytic capacitor, a circuit board, an electrochromic

12

display, an electronic book, an organic solar cell or a photovoltaic cell.

- 12. Method according to claim 2 or 3 wherein the functional layer is selected from the group consisting of: an electroconductive layer, a colour filter, a liquid crystal alignment layer, a phosphor layer, an insulating wall, a dielectric protecting layer, an electroconductive pattern, microtips, a reflecting cathode, an electroluminescent layer, a hole-injection layer and a transparent anode.
- 13. Method of making a module for use in an electric or electronic device, said method comprising the steps of
 - (i) providing a flexible substrate with a functional layer selected from the group consisting of an electroconductive layer, a colour filter, a liquid crystal alignment layer, a phosphor layer, an insulating wall, a dielectric protecting layer, an electroconductive pattern, microtips, a reflecting cathode, an electroluminescent layer, a hole-injection layer and a transparent anode;
 - (ii) bringing said flexible substrate into parallel contact with another substrate so as to obtain a module wherein the functional layer is present between both substrates;
 - (iii) laminating a glass sheet having a thickness in the range from 10 μm to 0.7 mm to at least one side of the module.

* * * * *